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A linearized stability analysis is carried out for the breakup of small-diameter liquid 
filaments of dilute polymer solutions into droplets. Oldroyd’s 8-constant model 
expressed in a corotational reference frame is used as the rheological equation of state. 
The crucial idea in this theory is the recognition that the liquid may be subject to  an 
unrelaxed axial tension due to  its prior history. If the tension is zero, the present 
analysis predicts that jets of shear-thinning liquids are less stable than comparable 
jets of Newtonian liquids; this is in agreement with previous analyses. However, when 
the axial tension is not zero, and provided the stress relaxation time constant is 
sufficiently large, the new theory predicts that  the axial elastic tension can be a 
significant stabilizing influence. With reasonable values for the tension and stress 
relaxation time the theory explains the great stability observed for jets of some shear- 
thinning, dilute polymer solutions. The theory explains why drops produced from jets 
of such liquids are larger than drops from corresponding Newtonian liquids. The 
theory also appears capable of explaining the sudden appearance of irregularly spaced 
bulges on jets after long distances of t,ravel with little amplification of disturbances. 

1. Introduction 
This paper presents a linearized stabiIity analysis for the breakage of viscoelastic 

liquid filaments into droplets. Our interest in this problem stems from the fact that the 
disintegration of accidentally released liquid fuels into fine mists poses a serious fire 
hazard. Addition of ‘ anti-misting ’ polymeric additives to  the fuel to suppress dis- 
integration is under active study (Weatherford & Wright 1975; San Miguel 1978). 
However, the mechanisms by which these additives work are not well understood, so 
that it is difficult to select polymers which are effective anti-misting agents and whose 
addition leads to  other properties required of the modified fuel. A theoretical and 
experimental study of the breakup of small-diameter liquid filaments of dilute polymer 
solutions seems warranted for the following reasons. (i) The formation of small- 
diameter liquid filaments from larger volumes of accidentally released liquid fuels is 
an  important step in the disintegration process. (Giffen & Muraszew 1953; Hoyt & 
Taylor 1 9 7 7 ~ )  6 ;  Altman, Hoyt & Taylor 1979). (ii) Experiments with capillary jets 
could serve as a rapid and reliable method of screening polymeric additives to  select 
promising candidates for study in more difficult or expensive experiments. (iii) Experi- 
ments with capillary jets should lead to  better understanding of those physical 
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properties of polymeric additives that are responsible for enhanced stability, and could 
thereby lead to  improved additives. This paper deals only with the theory of jet 
breakup. An experimental study is underway; the results will be reported a t  a later 
date. 

Linearized stability analysis of surface-tension-driven breakup of jets of Newtonian 
liquids is reasonably well understood. I n  such analyses the jet is presumed to  be 
subjected to small disturbances of the form exp (pt + i27rzt/l),  where p i s  the amplifica- 
tion (p  > 0) or damping (/I < 0)  factor for growth in time, 1 is the wavelength of the 
disturbance, t is time, and z’ is the axial distance measured in a co-ordinate system 
moving with the jet. The linearized equations of motion and boundary conditions 
constitute an eigenvalue problem which relates p to 1 and the other relevant vari- 
ables. These variables include jet radius a, jet velocity U ,  coaxial gas velocity 0, gas 
density p̂ , liquid density p, surface tension (T, and the rheological properties of the 
liquid. For a Newtonian liquid only a single rheological parameter is needed, the 
(constant) shear viscosity 7. Most experiments involve spatial growth rather than 
temporal growth. The eigenvalue problem relating /3 and 1 is identical for temporal 
growth, but for spatial growth /3 = iw ,  where the frequency w of the disturbance is a 
real number, and Ic = Zr/ l  is regarded as a complex function of w and the other 
variables. The sign of the imaginary part of k determines which frequencies amplify 
or damp. If the amplification rate is such that the change in amplitude over a distance 
on the order of the wavelength is small, then numerical results for temporal growth in 
a moving co-ordinate system are in close correspondence with numerical results for 
spatial growth. The requirement for this is p l / U  < 1, a requirement satisfied for many 
experimental studies. Once the relationship between p and 1 is known, the diameter 
D of the resulting drops and the length L from the orifice to  the point of drop formation 
can be estimated as follows: 

Here E is the amplitude of the disturbance a t  the orifice and p is  assumed to  be constant 
from the orifice to  the point of drop formation. 

The first stability analysis of this nature was done by Rayleigh (1879), who ex- 
amined the breakup of a jet of inviscid liquid having no aerodynamic interaction with 
the surrounding gas. Rayleigh found that 

~2 = (+a31 ( 1  - P )  mwo(~), (3) 

6 = 2 r a / l ,  (4) 

where the wavenumber 

and I,(() and I,(() are modified Bessel functions of the first kind. For wavenumbers 
greater than unity, the solutions for ,8 are imaginary, so that short-wavelength dis- 
turbances oscillate but do not grow or damp in this inviscid case. For wavenumbers 
less than unity ,8 has a positive real root, so that disturbances with wavelengths 
greater than the circumference of the jet are unstable. Rayleigh showed that the 
wavenumber of greatest growth rate is very nearly < N 44 = 0.707, and that a t  this 
wavenumber /3 is very nearly given by p E (g/8pa3)). It is convenient to choose 
(8pa3/a)t as a characteristic time and 2a as a characteristic length. In  terms of these 
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quantities we define the following dimensionless groups, which are conventional in 
the study of capillary jets: 

B = / 3 ( 8 p ~ ~ / c ~ ) 4 ,  2 = 9 / ( 2 p ~ c ~ ) * ,  ( 5 ) )  (6) 

B is a dimensionless amplification factor, Z is the Ohnesorge number used to  charac- 
terize the influence of liquid viscosity, W is the Weber number used to characterize 
the influence of liquid inertia, and J? is a Weber number for the gas used to  characterize 
the aerodynamic interaction of the jet with the surrounding gas. 

Rayleigh’s analysis was extended by Weber (1931) to include the destabilizing 
influence of aerodynamic interactions of the corrugated liquid jet with the surrounding 
gas and the stabilizing influence of the liquid viscosity. Sterling & Sleicher (1975) 
repeated Weber’s analysis but without the approximations introduced by Weber 
which limited his analysis to  small values of 2. For p^ < p, Sterling & Sleicher’s result 
can be expressed in terms of the above dimensionless groups as: 

(9) 
where 

(10) 

B 2 3 ( t )  + 4 B Z t 2 { 4 9 ( t )  - 1 + at7 6, I> = 4 t 2 P  - tz + J%K,(f;)/2K,(f;)), 

(1 = t2 + B / 4 Z ,  

&(t, (1) = 4t2{.a(t) - 9(tl))/(t12 - t2>, (12) 

and Ko( t )  and K,(t)  are modified Bessel functions of the second kind. I n  Weber’s 
approximation 9(t) is approximated as unity for t 5 1 and Q ( [ ,  El) is approximated 
as zero for 6, 9 1, i.e. 2 < 1.  Computations of B(t ,  2, W )  from (9) show that,, at constant 
2 as W increases the dimensionless amplification factor also increases, indicating 
shorter jet lengths; that disturbances with wavenumbers greater than unity become 
unstable; and that the wavenumber forAmaximum growth shifts to  large values, 
indicating smaller droplets. At constant W ,  as Z increases the dimensionless amplifi- 
cation factor decreases, indicating longer jet lengths, and the wavenumber for maxi- 
mum growth shifts to  smaller wavenumbers, indicating larger droplets. For example 
with @ = 0 and 2 = 0 ,  the maximum value of B is 0.971, occurring a t  [ = 0.697; with 
W = 0 and 2 = 0.6, the maximum value of B is 0.356, occurring a t  t = 0.421. The 
reader is referred to  the papers of Grant & Middleman (1966) and Sterling & Sleicher 
(1975) for a comparison of predicted jet lengths with experiment. 

Recent research dealing with the breakup of jets of Newtonian fluids has focused 
on finite-amplitude effects in jets of low viscosity, and the conditions under which 
satellite drops are formed. Bogy (1979) has given a comprehensive review of this 
theory, and a very recent article by Chaudhary & Redekopp (1980) also deals with 
such theory. Chaudhary & Maxworthy ( 1 9 8 0 ~ ~  b )  observed the pattern of jet breakup 
for disturbances of controlled amplitude and frequency, including harmonics, de- 
liberately imposed on low-viscosity liquid jets. These studies were motivated by the 
application of ink-jet printing. 

Breakage of non-Newtonian liquid filaments, especially viscoelastic liquid filaments, 
is at best poorly understood. It is important to distinguish between surface-tension- 
driven breakup, the subject of this paper, and another type of instability known as 
draw resonance. Draw resonance is the periodic variation in radius of a liquid filament 

A 

A 
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undergoing elongation between an orifice where the thread is formed and a rot,ating 
take-up drum. The theory of this phenomenon is outlined in the book by Middleman 
(1977), and is surveyed in two comprehensive review articles on instabilities in non- 
Newtonian flows by Pearson (1976) and Petrie & Denn (1976). In  this theory, one first 
derives expressions for the one-dimensional variation of jet radius and jet velocity as 
functions of the distance from the orifice, the velocity being specified a t  the orifice and 
take-up roll. The draw ratio is defined as the ratio of the velocity of the filament a t  
take-up to the velocity of the filament at the orifice. Linearized stability analysis for 
the flow shows that below some critical draw ratio the steady one-dimensional flow is 
stable, but that above this critical value the flow is unstable. Surface effects are neg- 
lected in both the basic flow and the stability analysis. For Newtonian fluids the 
critical draw ratio is 20.2. For non-Newtonian fluids the critical draw ratio depends 
on the rheological equation of state chosen. The interested reader is referred to the two 
review articles cited above. Apart from the question of stability of these one-dimen- 
sional steady flows, there is the question of whether or not the rheological equation of 
state chosen even permits a one-dimensional steady-state solution at large elongational 
rates. This aspect of the spinnability of liquids is reviewed in the papers of Pearson 
(1976) and Petrie & Denn (1976), and an extensive discussion is given by Petrie (1979). 
Most rheological equations of state do not permit well-behaved one-dimensional steady 
solutions above some critical elongational rate. The critical elongational rate depends 
on t,he rheological equation of state chosen, and is probably related to the fact that the 
equation of state yields an expression for the elongational viscosity that becomes 
infinitely large a t  some finite elongational rate, yielding infinitely large tensile stresses. 
When the tensile stress produced by the rapid elongation of the filament exceeds the 
cohesive strength of the material, the filament will rupture. Cohesive fracture has been 
discussed by Ziabicki & Takserman-Krozer ( 1 9 6 4 ~ )  b) ,  and a survey appears in the 
book by Ziabicki (1976). Cohesive fracture may be coupled strongly with surface- 
tension-driven breakup because of spatial variation of thread diameter induced by 
capillarity. The coupling may be particularly important in view of the predictions of 
Tomotika (1936) and Mikami, Cox & Mason (1975) that  threads of Newtonian liquid 
undergoing continuous extension are much more stable to  surface-tension-driven 
breakup than are threads of constant diameter in plug flow. 

We return to the discussion of surface-tension-driven breakage of viscoelastic liquid 
threads of nearly uniform diameter in nearly plug flow. It is necessary to adapt some 
rheological equation of state. For the present paper we have used the Oldroyd 8- 
constant model expressed in a corotational frame of reference; the ‘constants’ in this 
model are a zero shear viscosity yo, a stress relaxation time A,, a strain-rate relaxation 
time A,, and five other time constants po,  p,, p2, u1 and u2 that may be needed to 
characterize the rheological responses of the liquid. For discussion of the necessity of 
objective reference frames and of the Oldroyd 8-constant model, the book by Bird, 
Armstrong & Hassager (1977, p. 336) should be consulted. In the notation of this 
reference the rheological equation of state used is 

BT 
9 t  T+ h -+ gpo(trT)+- &+. y + y . ~ } +  4 u 1 ( 7 : y )  I 
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where 
i. = v v +  (VV)T, (14) 

0 = vv- (VV)T, (15) 

9k = ~ + ( v . v ) T + + { w . T - T . w } ,  2%- at 

2 9 t  = ~ + ( v . v ) i . + : { w . + - y . w } .  at 

Here v is the velocity vector, T is the stress tensor, +is the rate-of-strain tensor, o is 
the vorticity tensor, 9 / 9 t  is the Jaumann or corotational derivative, and I is the 
unit tensor. 

Rheological responses such as the shear viscosity, the first normal-stress coefficient, 
and the second normal-stress coefficient as functions of rate of strain, the real and 
imaginary parts of the complex viscosity as functions of frequency, and the elonga- 
tional viscosity as a function of the rate of elongation, all involving the eight constants 
of Oldroyd’s model, are given explicitly by Bird et al. (1977) .  At present no rheological 
equation of state can describe accurately every non-Newtonian fluid under every flow 
situation. However, the Oldroyd 8-constant model is sufficiently flexible that it can 
be made to  match semi-quantitatively rheological responses of many dilute polymer 
solutions by appropriate choices for the eight constants. I n  many applications the 
eight constants are reduced to a smaller number by presuming certain proportionalities 
among the seven time constants. 

All previous linearized stability analyses of surface-tension-driven breakup (with 
the exception of those that postulate the formation of a gel) have presumed the jet to  
be in a completely relaxed state, i.e. plug flow and zero residual stresses other than a 
constant pressure. If small disturbances proportional to  exp (Pt + iZnx‘/E) are super- 
imposed on the completely relaxed jet, then to first order in small quantities (13) 

when expressed in a co-ordinate system moving with the jet. This equation is the same 
rheological equation of state as for a Newtonian fluid with ‘effective’ viscosity 
q(P) = qo(l +/3h,)/(l +PA,). Consequently the theoretical result of Weber (1931) and 
Sterling & Sleicher (1975) given by (9)-( 12) is immediately applicable provided we 
replace the Ohnesorge number 2 by an ‘effective’ Ohnesorge number Z(p) :  

Z(P) = [ro/(2pa441(1 + P W ( l  +PA,) 
= ZO(1 +PA,) / ( l  +PA,). (19) 

The great majority of dilute polymer solutions are shear-thinning. For shear-thinning 
fluids A, < A,. Under unstable conditions (P > 0)) a shear-thinning fluid has a smaller 
effective viscosity, hence a smaller effective Ohnesorge number, than does the cor- 
responding Newtonian fluid with constant viscosity equal to  yo. As discussed above, 
the smaller the Ohnesorge number, the less stable is the jet in the sense that as the 
Ohnesorge number decreases the dimensionless amplification factor B increases, 
implying shorter jet lengths to the formation of drops; also, the wavenumber for 
maximum growth rate shifts to  larger values, implying the formation of smaller- 
diameter drops. This line of reasoning results in the conclusion that the elastic nature 
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of dilute viscoelastic polymer solutions is destabilizing. Such was the theoretical 
conclusion of Middleman (1965), Paul (1968), Goldin et al .  (1969), Rubin (1971), 
Sagiv, Rubin & Takserman-Krozer (1973), Gordon, Yerushalmi & Shinnar (1973) and 
Lee & Rubin (1975), all of whose chosen rheological equations of state reduced to (18) 
in their respective analyses. 

The conclusion that the elastic nature of dilute viscoelastic polymer solutions is 
destabilizing is puzzling in view of the great stability observed experimentally for jets 
of many dilute polymer solutions (Goldin et al. 1969; Gordon et al. 1973). Indeed, such 
pronounced stability is essential for the successful operation of wet-spinning processes. 
Among the proposals offered to resolve this anomaly are the following. (i) There is a 
change of structure for the liquid associated with large deformation at the nozzle; 
Goldin, Pfeffer & Shinar (1 972) carried out a linear stability analysis for a liquid having 
a finite yield stress. (ii) The higher amplification rates for truly infinitesimal disturb- 
ances are accepted; but it is suggested that even for small disturbances nonlinear 
terms in the rheological equation of state are important; if a finite-amplitude stability 
analysis were carried out, such an analysis might show smaller amplification rates 
(Goldin et al. 1969). (iii) Initially higher amplification rates are accepted, but a t  a later 
stage thin filaments connect larger bulges along the jet length; the drainage of these 
filaments into the bulges is an elongational flow which is resisted by a large elongational 
viscosity (Gordon et al. 1973). These proposals may explain the observed enhanced 
stability of some polymer solutions under some flow conditions. However, some 
observations for jets of dilute polymer solutions are not explained. In particular, jets 
of shear-thinning liquids can travel significant distances with very little amplification 
of disturbances, and then over a relatively short distance the amplitude increases 
almost explosively. The resulting bulges are often much more irregularly spaced, with 
larger average spacing than is found for Newtonian fluids. This results in larger drops, 
but with a wider size distribution, in addition to long breakup lengths. 

The crucial idea in the theory to be presented is the recognition that the liquid may 
be subject to an unrelaxed axial tension. Axial elastic tensions in viscoelastic liquid 
jets do arise from the large deformation rates within the capillary tube or a t  the 
nozzle. Although the elastic tension rapidly decreases within a few jet diameters from 
the orifice, nevertheless smaller but significant elastic tensions are known to persist for 
long distances along the jet for some dilute polymer solutions (Gill & Gavis 1956; 
Gavis & Gill 1956; Gavis & Middleman 1963). Similarly, small-diameter liquid filaments 
formed from accidentally released fuels containing dissolved antimisting polymer 
additives will develop axial elastic tensions as a result of the rapid elongation of these 
threads from larger volumes of liquid. The possibility that an elastic tension could 
account for the observed great stability was first suggested by Debye & Daen (1956). 
However, this idea does not seem to have been developed quantitatively in a satis- 
factory way. As mentioned earlier, all previous theoretical analyses, with the excep- 
tion of those that postulate the formation of a gel, have presumed the jet to be in a 
completely relaxed state, i.e. plug flow and zero stresses. These previous analyses are 
not consistent with the observed great stability of many shear-thinning viscoelastic 
liquids because the analyses actually predict that such jets are less stable than com- 
parable jets of Newtonian liquids. The present analysis also predicts that jets of shear- 
thinning liquids are less stable than comparable jets of Newtonian liquids when there 
is no axial elastic tension. However, when the elastic tension T is not zero, and pro- 
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vided the stress relaxation time A, is sufficiently large, the new theory predicts that 
the elastic tension can be a significant stabilizing influence. We introduce the following 
two dimensionless groups: 

Te = -Ta/a, (20) 

D = A, (a /8p3)* .  (21) 

The dimensionless elastic-tension group includes a minus sign because according to 
the convention of Bird et al. (1977)  tensile forces are regarded as negative and com- 
pressive forces as positive. D is the Deborah number used to characterize the stress 
relaxation time. Other factors held constant, the theory predicts that, the larger Te 
is, then the greater is the stabilizing effect of the tension; the larger D is above some 
critical value of the order of unity, then the greater is the stabilizing influence of the 
tension. 

2. Theory 
Consider an unsteady but axisymmetric jet of viscoelastic liquid moving through 

an inviscid gas. The local radius of the jet is denoted by R(z , t ) .  I n  cylindrical CO- 

ordinates ( r , O , z ) ,  the velocity and pressure in the liquid are (v,,O,v,) and p ;  the 
corresponding quantities in the gas are (Or, 0, 0,) and 9. In  the notation of Bird et al. 
(1977, appendix B) the equations of continuity and motion for an  incompressible 
liquid of arbitrary rheology are 

av, 9, av, -+-+- = 0, 
ar r a x  

The rheological equation of state relating the stress tensor T to  the velocity field 
adopted for this study is the Oldroyd 8-constant model expressed in a corotating 
reference frame; this relationship is given in (13).  The gas satisfies a similar trio of 
equations but, because we assume the gas to be inviscid 9 = 0,  

The liquid and gas velocity fields are coupled by four boundary conditions to  be 
applied a t  the jet surface r = R(z, t ) :  

or = a q a t  + GzaR/ax, (28) 

9 
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Equations (28) and (29) express the kinematic condition at the jet surface for the gas 
and liquid respectively. Equation (30)  expresses the vanishing of the tangential forces 
at the jet surface for an inviscid gas. Equation (31)  expresses the balancing of the 
difference of normal forces at the jet surface by the surface tension and curvature of 
the surface. 

At large radial distances from the jet, the gas moves in plug flow with velocity 0. 
Thus, for r + co 

Other boundary conditions are provided by the requirement that the liquid velocity 
and stress be finite along the jet axis r = 0. 

It is beyond the scope of t'he present paper to compute the unperturbed velocity 
profile and jet radius as functions of axial distance for a viscoelastic liquid jet issuing 
from an orifice. Our interest is in the region beyond several jet diameters from the 
orifice where, in the absence of external forces or a take-up drum, the jet approaches 
a constant radius a with plug-flow velocity U .  However, the following analysis shows 
that in this region, provided W = 2paU2/g is sufficiently large, variations in jet radius 
and velocity with axial distance are small even though the axial tension has not 
completely decayed to zero. Following Bird et al. (1977, p. 5 0 ) ,  the equations of 
conservation of mass and momentum may be integrated over a control volume from x 
to co enclosing the jet. With the neglect of air inertia and air drag, we find 

nR2 (vz> = na2U, 

;i7 = 0, oz = 0. (32) 

nR2p (vJ 2 + nR2 ( p  + r,J - 277Ra/( 1 + RZ)+ - n(a2 - R2) i; = na2pU2 + na2p, - 2nau. 

Combining (30) and ( 3 1 )  shows that the pressure in the liquid just below the gas-liquid 
interface is given by 

In the region of interest R, < 1 for the unperturbed flow, and the axial pressure, 
stresses and velocities can be treated as being constant across the jet's cross-section. 
Combining the above three equations gives the following dimensionless relationship 
between the jet radius R/a at position z where the tension is Te, and at infinity where 
R/a = 1 and the tension has decayed to zero: 

1 - a2/R2 + 2(R/a - 1 + Te R2/a2)/ W = 0. 

Table 1 shows R/a as a function of W for selected values of Te. For example with 
Te = 2 the change in jet radius as the tension relaxes to zero is less than 2 % provided 
W 2 100; the corresponding change in jet velocity is less than 4 %. Larger values of 
W or smaller values of Te give smaller changes in the unperturbed jet radius and 
velocity. Since most experimental conditions (beyond a few jet radii from the orifice) 
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\ Te 0.1 0.2 
W 
103 0.9999 0.9998 
102 0.9990 0.9980 
10 0.9912 0.9828 

1 0.9559 0.9205 

TABLE 1 

0.5 1 2 5 10 

0.9995 0.9990 0.9980 0.9951 0.9903 
0.9951 0.9904 0.9814 0.9575 0.9247 
0.9603 0.9291 0.8814 0.7935 0.7139 
0,8455 0.7659 0.6766 0.5573 0.4742 

Variation of jet radius Rla 

correspond to W > 100 and Te c 2, the results of t,he stability theory to be presented 
seem to be generally applicable. 

We assume that the filament has ‘nearly constant’ radius a, moves in ‘nearly 
constant’ plug flow with axial velocity U ,  and is under a ‘nearly constant’ axial 
tension T. This state is disturbed by small, axially symmetric perturbations of the 
form eexp (,& + inz/l), so that 

R(z, t) = a + e exp (/3t + i2nxll). (33) 

Here t is time, x is axial distance measured in a fixed co-ordinate system, 1 is the 
wavelength of the disturbance, E is the initial amplitude of the disturbance, and /3 is 
the amplification factor for a disturbance of wavelength 1. For ‘nearly constant ’ jet 
velocity and radius, (13) requires that the axial tension decay exponentially with a 
time constant A,: 

This represents a stress relaxation at  constant extension. The results are therefore 
limited to a distance downstream from t,he orifice sufficient for the jet radius and 
velocity to approach their asymptotic values but where the axial tension has not yet 
decayed to zero (see the discussion above). 

The term ‘nearly constant ’ as used above is taken to mean that fractional changes 
in a, U and T are small over distances comparable to the wavelength, i.e. 

T(z )  = To exp ( - x/h, U ) .  (34) 

l/h,U -g I .  (35) 

In terms of the dimensionless groups defined in $ I ,  this inequality may be rewritten as 

50 W* n. (36) 

To carry out a linearized stability analysis for the basic flow, we superimpose small 
disturbances on the velocities, pressures, and stress components of the same form as 
the disturbance superimposed on the jet radius: 

v = ( O , O ,  U )  -t (wi, 0 ,  a;) cexp (Pt + i k z ) ,  

T = TS, 8, + T’C exp (/3t + ikx), 

G = (0, 0,8) + (0;) 0 , Q  c exp (Pt + ikz), 

@ = P + 13’6 exp (Pt + ikz). 

(37) 

p = P+p1cexp(/3t+ikx), (38) 

(39) 

(40) 

(41) 
A 

Primed quantities are presumed to be independent of t  and z and to depend only on 
radial position r .  Also 

k = 2n/l .  (42) 
9-2 
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When (40 )  and ( 4 1 )  are substituted into (25) - (28)  and ( 3 2 ) ,  and only first-order 
quantities in E retained, the following set of equations governing the gas are obtained: 

dOi/dr + ai/r + ik0; = 0 ,  

p^(p + i k O )  6; = - djY/dr,  

p^(P + i k O )  3: = - ikfj’, 

(43 )  

(44 )  

(45 )  

@;(a) = ( P + i k O ) ,  ( 4 6 )  

a:(co) = 0, a;(oo) = 0, fi’(C0) = 0. (47 )  

fj’(r) = pa(@+ i k 1 ) 2 ~ , ( k r ) / k a ~ ~ ( k u ) .  (48 )  

The solution to this set of linear equations for the gas pressure is easily shown to be 

To simplify the analysis for the liquid flow, it is convenient to introduce a stream 
function $’(r) exp (Pt + ikx) for the disturbances in the liquid velocit,ies: 

Substituting (37) - (39)  and (49 )  into ( 2 3 )  and ( 2 4 ) ,  retaining only first-order quan- 
tities in E ,  and then eliminating the pressure between the two resulting equations 
yields the following differential equation for $’ : 

where 
p(P+  i k U )  F21,.h’ = G2(r&) + ikr d(TLZ - ri,)/dr - ik(ri, - T & ) / r ,  (50 )  

Substituting (37) - (39)  and ( 4 9 )  into the three boundary conditions expressed in 
(29) - (31)  and retaining only first-order quantities in E gives 

$’ = a(P+ i kU) / ik  on r = a, ( 5 3 )  

riz = -ikT on r = u, (54 )  

p ( P + i k U )  (dI,.h‘/dr) - a ( r 7 i , ) / d r - i ~ ~ ( 7 L 2 - 7 ~ , )  

= - ( i k g / a )  (1 -k2a2)+ikj3a2(/3+ikt??)2Kl(ka)/kaK,(ka) on r = a. (55 )  

To obtain this last equation from (31), the liquid pressure is first found from the 
z-momentum equation, and the gas pressure in (48) is used. 

It is necessary to relate the perturbation in the stress tensor to  the velocity per- 
turbations, and thereby to the stream finction for the disturbed flow. Because t,he 
basic liquid flow is plug flow, the undisturbed rate-of-strain tensor and the undisturbed 
vorticity tensor are bothzero. Perturbations in the rate-of-strain tensor +’E exp (Pt + i k z )  
and vorticity tensor u ’ e  exp (Pt + i k z )  are first found as follows: 

y;, = 2ik d ($ ’ / r ) /d r ,  (56) 

y& = 2ik$’/r2, (57 )  

yiz = 2k2$‘/r, ( 5 8 )  

( 5 9 )  

(60) 

yiz = yr: = - (G2$’)/r,  

o : ~  = -- O J ~ ,  = - ( P @ ’ ) / r .  
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Components off '  and o' not shown are zero. The linearization of Oldroyd's 8-constant 
model (13)  resuhs in the expression 

[ 1 + ( p + i k U ) A , ] ~ '  = - ~ o [ l + ( p + i k U ) A , ] + '  
+I 2PO T' '  Y + 4 4  T4,& 6, + s, ST> 

- T{Y;, S, 6, + YLr S, 6, + 2$,, S,S,) + 4 ~ 1  TV;z I .  (61) 

I n  obtaining this result, the term vLaT/a.z is neglected, because if the other terms 
are of order unity then this term is of order l / A ,  U .  Our assumption that the tension 
be 'nearly constant' required Z/A, U < 1. Inspection of (61 )  makes it clear that if T 
is not equal to zero then the rheological equation of state does not reduce to a form 
equivalent to that for a Newtonian fluid. 

The specific components of T' required in (50), (54) and (55 )  are written explicitly as 

[ I  + (p + i k U )  A,] [rQ = (qo[ 1 + (p + i k U )  A,] + &ul T - +p0 T }  Gz$' - +Al TF2$', ( 6 2 )  

I [ I +  (p+ i k u )  hi]  [7;,--7:,1 = - ~ o [ l +  ( p + i k U )  &I- &POT 

Substitution of these three expressions into (50) gives the following remarkably 
simple differential equation for $': 

Pz{P2 - (k: - k2) )  = 0, 
where 

p ( P +  i k U )  [I f (p+ i k U )  A,] + A, T k 2  k: = kz+ 
T o l l  + (P+ikU) &I + 4(P,-~,-Po) T '  

Except for the different definition of k,, this differential equation is identical with 
that for the breakup of a viscous Newtonian liquid. The solution that remains well- 
behaved on r = 0 is 

$' ( r )  = c1 r l , ( k r )  + c2 rIl(kl  r ) ,  ( 67 )  

where cl and c2 are constants. Substituting ( 6 2 )  and ( 6 7 )  into (53) and (54) gives a pair 
of equations by which c1 and c2 are determined. Having done this, we substitute (62), 
( 6 3 )  and ( 6 7 )  into the third boundary condition at  the jet surface, namely (55 ) .  This 
procedure then results in an equation relating p to 1 and the other variables. After a 
great deal of manipulation to reduce the relat,ionship to as convenient a form as seems 
possible, we find 
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The functions # and Q are those defined in ( 1  1) and (12). Equation (68) can be used to 
describe spatial growth of disturbances of frequency w if we set /3 = iw and solve for k 
as a complex function of w. Here p l /U  need not be small. When pl /U < 1 ,  spatial 
growth is equivalent to temporal growth in a co-ordinate system moving with the jet 
velocity; in such a co-ordinate system the jet velocity appears to be zero and the gas 
velocity appears to be 8 - U .  Furthermore, because p^ < p and /3 < IU, we can neglect 
the terms involving the gas density except for that multiplied by (0 - U ) z .  When we 
make these substitutions and approximations in (68) and express the result in the 
dimensionless terms defined in $ 1, we obtain the following equation for the dimension- 
less temporal amplification factor: 

B2y(6)  4BZot2[4#(t) - 1 Q(t, 6 1 ) 1 [ 1  (&/hi) DB1/[14- DB1 
= 4c2[1 -t2+ J?[Ko([)/2Kl([)] 

where 
B[ 1 + DB] + 8DTet2 

" = ' 2 + 4 2 0 [ 1  + (h,/h,) DB] + 4D9"e[(p1-~0)/h1-  11' 

If Te equals zero, then (69) and (70) reduce to the result given by (9) for viscous 
Newtonian liquid except that the Ohnesorge number 2 must be replaced by an 
effective Ohnesorge number given by Z o [ l  + (h2/A1) D B ] / [ l +  DB] which is the same 
as the dimensional form given in ( 1 9 ) .  For shear-thinning fluids A, < A,; if Te = 0 ,  
shear-thinning fluids will be more unstable than Newtonian fluids of constant viscosity 
equal to vo. When Te > 0, numerical solutions to (69) show that the axial tension 
can be a significant stabilizing influence provided D is sufficiently large. Numerical 
results are given in $3.  

3. Results 
The relationship between /? and the other variables given in (68) does not involve 

three (vl, vz and pz) of the seven time constants in Oldroyd's 8-constant model. 
Furthermore, if we restrict ourselves to sufficiently small growth rates @Z/U < l), then 
the disturbances can be treated as growing in time in a co-ordinate system moving 
with the jet. In  this approximation, the dimensionless amplification factor B does not 
depend on the Weber number W for the liquid. Equation (69) can be written sym- 
bolically as 

(71) B = m, 2 0 ,  Te, D, ~ , / ~ , , p u , / ~ , , p , / ~ , ) .  

If Te = 0, B also becomes independent of pJh, and po/hl ,  and (71) reduces to the 
result for a viscous Newtonian liquid except that Z is replaced by 

Jets of shear-thinning liquids with Te = 0 are less stable than corresponding 
Newtonian jets. 

I n  view of the many variables on which B depends, it is desirable to adopt some 
restrictions. Most dilute polymer solutions show very small second normal-stress 
coefficients. Oldroyd's 8-constant model requires ,ul/hl = 1 for fluids with zero second 

Z0[1+ (hz/h,) DB1/[1 +DBI. 
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0’9 t 

B 

t 
FIGURE 1. Amplification factor B = p(8pa3/u)* as a function of wavenumber 5 = 2ra/l for a 
viscoelastic liquid jet sustaining various elastic tensions. The star marks the wavenumber and 
amplification factor for a Newtonian Cuid whose Ohnesorge number 2 is 0.6. 2, = 0.6, D = 200, 
h,/h, = 0.1, pJA1 = 1, po /h ,  = 0, w = 0. 

normal-stress coefficient. I n  all of the calculations reported here pJh, has been set 
equal t o  unity. 

Most, but not all, flow calculations based on Oldroyd’s 8-constant model take 
po = 0. Experimental justification for this is not clear to the present authors. However, 
po = 0 is inherent in the following simplifications of Oldroyd’s 8-constant model: 
Oldroyd’s fluid B, Williams’ 3-constant Oldroyd model, corotational Jeffreys model, 
Denn’s modified convected model, second-order fluid, and the convected Maxwell 
model (Bird et al. 1977). Most of the calculations reported here also set ,ao = 0. 

I n  order to  simplify the calculations and their interpretation further, we have set 
W = 0 for all calculations reported here. The presumption is that we can make the 
density of the surrounding gas sufficiently small that, even for large relative velocities 
between the gas and jet, TY < 1.  Depending on the other variables it may be necessary 
to  require W B 1 in order to trea; the disturbances as growing in time, but this in- 
equality is not inconsistent with W < 1 when p̂  < p. 

Figure 1 is a plot of the dimensionless amplification factor B as a function of the 
wavenumber [ for several dimensionless elastic tensions Te. The parameters held 

h 

h 
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FIGURE 2. Amplification factor B as a function of waveniimber E for a viscoelastic liq2id jet 
sustainingvarioiiselastic tensions. 2, = 0.2, D = 8,h,/h, = O.l,pl/hl = l , ~ ~ ~ / h ,  = 0, W = 0. 

c2nstant for this plot are 2, = 0.6, D = 200, h,/h, = 0-1, pl/hl  = 1, p,,/h, = 0 and 
TY = 0. The values selected for the first three groups are order-of-magnitude estimat,es 
for a 100 pm diameter thread formed from a 0.74 % solution of ‘AM-1 ’ in kerosene; 
‘AM-1 ’ is a commercial antimisting additive (manufactured by CONOCO) investi- 
gated by Peng & Landel (1980). As a point of reference, the star marks the wave- 
number and amplification factor for maximum amplification rate for a Newtonian 
fluid whose Ohnesorge number Z is 0.6; for this fluid the respective quantities are 
B = 0.356 a t  .$ = 0.421. For the viscoelastic liquid a t  zero elastic tension the maximum 
amplification factor is 0.825 a t  a wavenumber of 0.650. We see clearly that this shear- 
thinning liquid is less stable than the corresponding Newtonian liquid at Te = 0. As 
Te increases, B decreases, indicating longer distances to the point of drop formation. 
As Te increases, the wavenumber for maximum amplification shifts to  smaller values, 
indicating longer wavelengths and therefore larger droplets upon breakage. For the 
parameters selected, a t  [ _N 0.4, it is necessary for Te to  exceed about 0.3 before the 
stabilizing influence of the tension counterbalances the destabilizing effect associated 
with shear thinning. Further increases in Te result in greater stabilization. 

Although it is not clear from figure 1, as Te increases, some disturbances with 
wavenumbers greater than unity also become unstable, and the maximum in ampli- 
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Elapsed distance (z/U)(0/8pa~)~ 

FIGURE 3. Amplification of disturbances as a function of elapsed dimensionless distance (or time) 
for viscoelastic liquid jets of various initial elastic tensions. The tension decays exponentially 
with a time constant hLequal to the stress relaxation time. 2, = 0.6, D = 200, h,/h, = 0.1, 
,ul/hl = 1, ,uo/h, = 0, W = 0, [ = 0.421. 

fication rate becomes less pronounced. These trends are more clearly evident at smaller 
Deborah numbers. For example, for figure 2 , Z ,  = 0.2, D = 8 ,  &/A,  = O.l ,p , /h ,  = 1, 
,uo/A, = 0 and W = 0 ;  these values are order-of-magnitude estimates for a 1 mm 
diameter thread formed from a 0.74 yo solution of ‘AM-1 ’ in kerosene. Again, as a point 
of reference the star marks the wavenumber ( f l  = 0.55) for the maximum amplification 
rate (B  = 0-62) for a Newtonian fluid of the same Ohnesorge number. When the 
maximum in the amplification factor becomes less pronounced, it is likely that the 
distribution in the resulting drop sizes will broaden because there is no disturbance 
that amplifies much more rapidly than the many other unstable waves. For ,ul/A, = 1 
and po/h ,  = 0, (69) requires that, as Te-tco, B-t 1/D or b+ l / h l .  Thus at very high 
tensions the fluid can respond no faster than the stress relaxation. 

The stress relaxation time constant A, is important in another way. For a jet with 
sufficiently large T e  the stabilizing influence of the tension exceeds the destabilizing 
effect of shear thinning, and the amplification rate is small. However, as the jet moves 
away from the orifice the elastic tension decays. The rate of amplification will increase 
with distance from the orifice. When the tension decays sufficiently, the destabilizing 
influence of shear thinning exceeds the stabilizing influence of the tension; here the 
rate of amplification is large. Liquids with large stress relaxation times, i.e. large D, 
will travel long distances from the orifice with little relaxation of the tension and 
consequently smaller amplification of disturbances than will comparable jets with 
smaller D. These trends are illustrated in figure 3. Here we plot the cumulative ampli- 
fication of a disturbance as a function of a dimensionless distance ( L I U )  (a/8pa3)* 
from the orifice. The parameter is a dimensionless tension number Te, = -T,a/u 
based on the tension To at the orifice. The parameters held constant @ this figure are 
g = 0.421,2, = 0.6, D = 200, h,/h, = O.l ,p , /h,  = l,,uo/h, = Oand W = 0. To obtain 
these curves we have numerically solved the equation U d e l d z  = P ( z )  6 ,  where p ( z )  is 
the local amplification, which depends on the local tension T(z)  as given by our theory, 
and T(z) = To exp ( - z/h, U ) .  

A 
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t 

t 
FIGURE 4. Dimensionless length ( L /  U )  (a/8pas)* required for disturbances to amplify 100-fold 
as a function of wavenumber for various initial elastic tensions. The tension decays exponentially 
with a time constant A, equal to the stress relaxation time. The star marks the minimum length 
for 100-fold ainplification of a Newtonian liqzid whose Ohnesorge number is 0-6. 2, = 0.6, 
D = 200, h,/h, = 0.1, pl/A, = 1, po /h ,  = 0, W = 0. 

In carrying out the integrations to produce figure 3 and subsequent figures, spatial 
variations in T(z) only and not in a and U have been considered. As discussed above, 
this is justified when W is greater than about 100. Also, to apply the results of a 
stability calculation for a locally ‘frozen’ flow to one with a spatially varying axial 
tension, it is necessary that Zlh, U = l/(D W be much smaller than unity. The value 
depends on the sensitivity of p to T .  By comparing /3[T(x + Z)] with P[T(z)] for small 
I/h, U ,  we arrive at the criterion 

T e  dB D $ - - -  
W(% d T e  ‘ 

For example from figure 2 at Te = 0.4 and 5 = 0.5 we estimate 

consequently we require D 9 1.2/ W .  Since W is expected to be of the order of 100, 
the choice of D = 8 for this calculation certainly seems adequately large. The longer 
the elapsed time or distance, the smaller are Te and dBldTe and the larger is B, so 
that the approximation o f a  ‘frozen’ flow becomes even better far from the orifice. 

B = 0.45 and dBldTe = (0.60- 0.33)/(0.2 - 0.6) = - 0.68; 
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FIGURE 5. Parametric study of the dimensionless length ( L / U )  (a /8pa3) i  required for 100-fold 
amplification of disturbances as a function of the dimensionless initial elastic tension Te, = 
T,a/a and dimensionless stress relaxation time D.  For this graph the Ohnesorge number 
2, = 0.001 is sufficiently small that the shTr-thinning property of the liquid is irrelevant. 
[ = 0.5, h,/h,  = 0.1, pl/hl = 1, po/hl  = 0,  W = 0. 

Figure 3 provides an explanation of the observation that some jets of dilute polymer 
solutions can travel significant distances with relatively small amplification of dis- 
turbances, and that then, suddenly, very large amplification rates develop. For 
example, with Te,  = 1 and the other conditions of figure 3, the dimensionless distance 
required for the disturbance to first increase tenfold is 125; a second tenfold increase 
in the disturbance amplitude will require an additional dimensionless distance of 
168 - 125 = 43; a third tenfold increase in the disturbance amplitude will require an 
additional dimensionless distance of only 187 - 168 = 19. The sudden development of 
large-amplitude waves after long distances of small amplification are associated with 
larger values of Te, and D and smaller values of h,/h,. 

Calculations of this type can be used to relate the length of jet from orifice to point 
of drop formation to the other variables if the amplitude a t  the orifice is known. For 
example suppose the amplitude of the disturbance at the orifice is 0.01 times the jet 
radius. The disturbance must amplify 100-fold before breakage occurs. For Te, = 1 
and the conditions of figure 3, breakage occurs at a dimensionless length of 168. 
Figure 4 shows the dimensionless length ( L / U )  (a/8pa3)* required for breakage as a 
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B'IGURE 6. Parametric study of the dimensionless length ( L I U )  (u/8pa3)* required for 100-fold 
amplification of disturbances as a function of the dimensionless initial elastic tension Te, and 
dimensionless stress relaxation time D. For this graph the Ohnesorge number 2, = 0.6 suffi- 
ciently large that the competition between the stabilizing influence of the tension and the 
kestabilizing influence of shear thinning is evident. E = 0.5, h,/A, = 0.1, y,/hl = 1, pUo/h ,  = 0, 
w = 0. 

function of the wavenumber when the initial amplitude is 0.01 times the jet radius. 
The parameter is the dimensionless tension T e ,  based on the tension at the orifice. 
Other parameters held con:tant for this figure are 2, = 0.6, D = 200, &/A,  = 0.1, 
,ul/h, = 1, po/Al  = 0 ,  and W = 0; these are the same conditions as for figure 1 .  The 
star marks the minimum length to breakup for a Newtonian liquid jet with 2 = 0.6. 
We see, in analogy with figure 1,  that, the larger Te, is, the greater is the length to 
breakage. Also, as Te, increases, the wavenumber for minimum jet length shifts to  
smaller wavenumbers, indicating longer wavelengths and larger resulting drops. The 
cumulative effect of small amplification rates at larger T e  with larger amplification 
rates at smaller Te results in a jet length to breakage having a much more shallow 
minimum than might have been guessed from figure 1 without these calculations. The 
minimum in jet length is especially shallow for larger Te, and D. These calculations 
may explain the sudden appearance of irregular bulges on jets not subjected to con- 
trolled disturbances; the irregularity is traceable to the nearly constant jet length for 
a spread of wavelengths, so that the wavelength observed more nearly reflects the 
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0.1 0.4 1.0 

0.00 1 34.0 34.0 34.0 34.0 
0.1 34.4 35.0 36.4 39. I 
0.6 36.1 38.9 46.0 56.9 
1 .o 37.4 41.9 52.4 67.9 

TABLE 2. Dimensionless breakage length 

randomness of the input disturbances than would be the case for a pronounced 
minimum in breakup length as a function of wavenumber. 

Figure 5 is a parametric study of the breakage length as a function of Te, and D for 
disturbances whose initial amplitude is 0.01 times the jetAradius. For this figure 
6 = 0.5, 2, = 0.001, h,/h, = 0.1, p l /h ,  = 1, ,uo/h, = 0 and W = 0. At this low value 
of Z,, viscous effects are negligible, so that the shear-thinning property of the liquid 
is irrelevant. The figure was prepared to show the order-of-magnitude increases in jet 
length brought about by the tension. For D < 1 there is a negligibly small effect of 
Te, on the dimensionless breakage length, which is nearly constant at the inviscid 
value of 5.41. For D > 1, as either D or Te, increase, the dimensionless breakage length 
monotonically increases. Tenfold and more increases in jet length are achieved with 
reasonable values of D and Te,. 

Figure 6 also is a parametric study of the breakage length as a function of Te, and 
D.  For this figure 2, = 0.6; the other variables are the same as for figure 5.2, = 0.6 is 
sufficiently large that viscous effects are important and the shear-thinning nature of 
the liquid results in reduced stability. This is most evident at small values of Te,; 
increasing D decreases the dimensionless breakage length from the Newtonian value of 
13.3 by perhaps a factor of two. At larger Te,, increasing D from zero first results in a 
reduction of jet length until D is in the range 1-2 where the reduction is about 30 yo. 
With further increases in D, the jet length increases monotonically. Increases up to 
tenfold are achievable with reasonable values of D and Te,. 

Comparison of figures 5 and 6 suggests that the dimensionless breakage length is 
relatively independent of 2, for 2, < 0.6 when De is large and Te, is not too small. 
Table 2 was prepared to evaluate the dependence of breakage length on the two 
parameters 2, and h,/h, that influence the ‘viscosity’. Other conditions for this table 
are an initial amplitude of 0.01 times the jet radius, E = 0.5, Te, = 0.5, D = 100, 
pl /h l  = 1, ,uo/h, = 0 and W = 0. The entries in table 2 suggest that, if 2, or h,/hl is 
sufficiently small, the breakage length is relatively insensitive to changes in these 
groups. Consequently, under such conditions it is not necessary to know the zero 
shear viscosity 7, and the retardation time constant h, in order to estimate the break- 
age length (unless these parameters are important in predicting To from the prior 
history of the fluid). 

Table 3 has been prepared to give some indication of the sensitivity of the breakage 
length to p,/h,. Other conditions for this table are initial amplitude of 0.0; times the 
jet radius, 6 = 0.5, Te, = 0.5, D = 100, h,/h, = 0.1, pl /h ,  = 1, and W = 0. An 
examination of the expressions for the rheological responses of an Oldroyd 8-constant 
fluid does not appear to restrict p, to positive values only. In fact the kinetic theory of 
‘ dumb-bells’ predicts that p o / h ,  = - 3. 

A 
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\ p o l h ,  -0 .2  - 0.1 0 0.1 0.2 0.5 

0.001 57.2 46.2 34-0 22-7 13.9 6.65 
0.1 58.0 46.9 35.0 23.5 14.5 6.80 
0.6 61.7 50.7 38.9 27.6 17.4 7.64 
1 .0 64.6 53.6 41.9 31.5 20.0 8.39 

TABLE 3. Dimensionless breakage length 

2 0  

The calculated values of the dimensionless breakage length show that positive 
values of po  are destabilizing and negative values of p0 are stabilizing. The lengths 
appear to be more sensitive to po/A,  than to A2/A, and 2,. Consequently, jet-stability 
measurements may provide some useful information on the elusive physical pro- 

It appears from our calculations that for dilute polymer solutions which show zero 
second normal-stress coefficient (so that p, = Al), the most-important parameter in 
the rheological equation of state with regard to jet stability is the stress relaxation 
time constant A,. Larger values of A, give larger values of D and therefore slower 
growth rates as long as Te is sufficiently large. Larger values of A, give slower relaxation 
of the axial elastic tension, so that the growth rate remains smaller for a longer elapsed 
time or distance. Also, it is likely that, the larger A, is, the larger will be the initial axial 
tension for given kinematics of the prior history. 

It is perhaps worth noting the relationship between A, and the elongational viscosity 
7 at a given rate of strain 6 .  One of the simplest cases is a Maxwell fluid which is em- 
bedded within the Oldroyd 8-constant model with t,he following choices for the 
constants: p, = A, and p, = A, = vl = ,uo = 0. For this fluid the elongational viscosity 
is given by 7 = 3q0/(1 - A ,  d -  2A:i2). Clearly, for a given elongational rate, the 
larger the stress relaxation time is, the larger is the elongational viscosity. It is there- 
fore possible to associate the enhanced stability of liquids with large A, to large 7. 
We think it is preferable to interpret the results in terms of the time constants as these 
are presumably independent of flow conditions, whereas the elongational viscosity is 
generally dependent on flow conditions. 

perty Po. 

- 

4. Conclusion 
A linearized stability analysis has been developed for the breakup of viscoelastic 

liquid threads that may be under elastic tension. The theory appears to account, at 
least qualitatively, for most of the observed breakage patterns for jets of dilute polymer 
solutions. For a quantitative comparison of the theory with experimentally measured 
breakage patterns one would need independent measurement of the rheological 
responses of the fluid from which the time constants could be inferred. One would also 
need an independent measure of the initial elastic tension To. An experimental study 
of jet breakup for dilute polymer solutions is currently underway. Our results will be 
reported in a future paper. 

This research was supported by NASA under NASA-Ames University Consortium 
Number NCA2-OR050-001. 
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